THE METHOD OF POLYGONAL NUMBERS IN THE TIME SERIES SMOOTHING PROCEDURE AND APPLICATIONS TO THE STUDY OF FINANCIAL MARKET INDICATORS
Table of contents
Share
QR
Metrics
THE METHOD OF POLYGONAL NUMBERS IN THE TIME SERIES SMOOTHING PROCEDURE AND APPLICATIONS TO THE STUDY OF FINANCIAL MARKET INDICATORS
Annotation
PII
S042473880000616-6-1
Publication type
Article
Status
Published
Edition
Pages
71-81
Abstract
A method of one-way weighted smoothing of time series based on the use of polygonal numbers is developed. The utility of applications of methods of additive numbertheory and finite difference calculus is shown. The method for calculating weight coefficients formoving averaging is based on a generalization of the solution of a single A. A. Markov problem. The proposed formulas find a natural mathematical justification in the form of establishingstrict limit ratios. A comparative analysis of the smoothing results obtained by various methods of one-way averaging is performed. The advantages of modified weighted averaging in comparison with other methods are proved.
Keywords
one-sided weighted smoothing, polygonal numbers, additive number theory, finite difference calculus, strict limit relations, modified weighted averaging
Date of publication
01.07.2010
Number of purchasers
2
Views
815
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References



Additional sources and materials

Bari N.K. (1961): Trigonometricheskie ryady. M.: GIFML.
Bobrov S.P. (1959): Arkhimedovo leto. Kn. 1. M.: GIDL.
Gel'fond A.O. (2006): Ischislenie konechnykh raznostej. M.: URSS.
Dzhini K. (1970): Srednie velichiny. M.: Statistika.
Kontsevaya N.V., Khatskevich V.L. (2009): O metodakh vydeleniya periodichnosti na rynke FOREX i optimizatsii torgovykh strategij // Sistemy upravleniya i informatsionnye tekhnologii. № 1–2 (35).
Markov A.A. (1910): Ischislenie konechnykh raznostej. Odessa: MATHESIS.
Polia G., Sege G. (1978): Zadachi i teoremy iz analiza. T. 1. M.: Nauka.
Chetverikov N.S. (1975): Sglazhivanie dinamicheskikh ryadov. V sb.: “Statisticheskie issledovaniya”. M.: Nauka.
Ehdvards G. (1980): Poslednyaya teorema Ferma. Geneticheskoe vvedenie v algebraicheskuyu teoriyu chisel. M.: Mir.
Ehjler L. (1997): Neopublikovannye materialy L. Ehjlera po teorii chisel. SPb.: Nauka.
Bertin M.J., Decomps-Guilloux A., Grandet-Hugot M. et al. (1992): Pisot and Salem Numbers. Basel –
Boston – Berlin: Birkhauser Verlag.

Comments

No posts found

Write a review
Translate